CFD for the Hydropower Industry

Thomas Hahm, Steffen Wussow F2E Fluid & Energy Engineering GmbH & Co. KG Hamburg, Germany

> ANSYS Conference & 28th CADFEM Users' Meeting 2010 November 3-5, 2010 – Eurogress Aachen, Germany

Content

- F2E
- Introduction
- Examples
 - River power plant I
 - River power plant II
 - Pumped storage power plant I
 - Pumped storage power plant II

F2E

• > 15 years experience in CFD for the energy sector

- Services:
 - Power Plants
 - CFD-analysis of e.g. steam valves
 - Wind energy
 - Turbulent wind loads in wind farms
 - Wind conditions in complex terrain
 - Hydro Power
- Located in Hamburg since 2008

Introduction

- Motivation
 - Increasing flood water and high tide events
 - Increased and changed use of systems (e.g. pump storage)
 - Increased safety requirements
 - Increased demand for renewable energy
- Standard allows for the modelling of hydrodynamics
 - Circulation, surge and downsurge, water hammer, waves
 - Hydrodynamic forces during movement of locks have to be taken into account
- Small scale model ↔ CFD

Introduction

- Basic conditions and major challenges
 - 2-phase-flow
 - Large span of dimensions:
 - river/reservoir (km) → gate/turbine (m)
 - Transient flow
 - Moving/sliding geometry
 - Compressible flow
 - Wide variety of data sources:
 - Airborne elevation data →

Gezoicheel	Datum 34. 10.31.	Noms		J. M. Votth Heidenheim
Geseben		men,		
ilono gops.		7		

River power plant I

Tasks:

- Lock gate closure
 - Water hammer
 - 1-D-analysis
 - Full 3-D-CFD
 - Swell on river (~0.2m freeboard)
- Optimization of power canal
 - Mass flow distribution at turbines
 - Velocity distribution across turbine inlet
 - Hydraulic resistance

River power plant II

Tasks:

- Mass flow distribution across turbines
- Assessment of flow at
 - Rake
 - fish pass
 - scour outlet
 - stilling basin
- Impact on sea lane

River power plant II

River power plant II:

hydraulic resistance of rake

Tasks:

- Lock gate closure under varying flow conditions
 - Forces and moments on gate and hydraulic drive

Model of turbine and lock gate

Principal flow

Principal flow pathlines

Lock gate

Model of dam and lock gate

Movement of lock gate

Model of dam and flood weir

Model of dam and flood weir

VATTENFALL

pressure distribution at weir

